วันเสาร์ที่ 20 กันยายน พ.ศ. 2557

IPv6

IPv6 ย่อมาจาก “Internet Protocol Version 6 ซึ่งจะเป็น Internet protocol รุ่นต่อไป  เพื่อที่จะนำมาใช้แทน Internet Protocol รุ่นปัจจุบันคือ IP Version 4 (“IPv4)
IPv6 (Internet Protocol version 6) เป็นเวอร์ชันล่าสุดของ Internet Protocol และได้รวมผลิตภัณฑ์ที่สนับสนุน IP มาเป็นส่วนหนึ่งด้วย รวมถึงระบบปฏิบัติการหลัก IPv6 ได้รับการเรียกว่า “IPng” (IP Next Generation) โดยปกติ IPv6 เป็นกลุ่มของข้อกำหนดจาก Internet Engineering Task Force (IETF) โดย IPv6 ได้รับการออกแบบให้ปฏิรูปกลุ่มของการปรับปรุง IP เวอร์ชัน 4 โดย host ของเครือข่ายและ node แบบ intermediate ซึ่ง IPv4 หรือ IPv6 สามารถดูแลแพ็คเกตของ IP เวอร์ชันอื่น ผู้ใช้และผู้ให้บริการสามารถปรับรุ่นเป็น IPv6 โดยอิสระ
การปรับปรุงที่ชัดเจนของ IPv6 คือความยาวของ IP address เปลี่ยนจาก 32 เป็น 128 การขยายดังกล่าวเพื่อรองรับการขยายของอินเตอร์เน็ต และเพื่อหลีกเลี่ยงการขาดแคลนของตำแหน่งเครือข่าย
IP v6 ได้กำหนดกฎในการระบุตำแหน่งเป็น 3 ประเภทคือ unicast (host เดี่ยวไปยัง host เดี่ยวอื่น ๆ) anycast (host เดี่ยวไปยัง host หลายตัวที่ใกล้ที่สุด) multicast (host เดี่ยวไปยัง host หลายตัว) ส่วนเพิ่มที่พิเศษของ IPv6 คือ
ตัวเลือกในการระบุส่วนขยายของส่วนหัว ได้รับการตรวจสอบเฉพาะจุดหมาย ดังนั้นความเร็วของระบบเครือข่ายสูงขึ้น
ตำแหน่ง anycast ทำให้มีความเป็นไปได้ของการส่งข้อความไปยังหลาย ๆ gateway ที่ใกล้ที่สุดด้วยแนวคิดว่าให้บุคคลใด ๆ บริหารการส่งแพ็คเกตไปยังบุคคลอื่น anycast สามารถใช้ในการปรับปรุงตาราง routing ตลอดเส้นทาง
แพ็คเกตได้รับการระบุให้มีการไหลชนิดพิเศษได้ ทำให้แพ็คเกตที่เป็นส่วนของมัลติมีเดียที่ต้องการ นำเสนอแบบ real time สามารถมีคุณภาพการให้บริการที่สูง

ส่วนหัวของ IPv6 รวมถึงส่วนขยายยินยอมให้แพ็คเกตระบุกลไกแหล่งต้นทาง สำหรับการรวมข้อมูล และรักษาความลับ


IPv6 จะถูกเริ่มใช้ที่ไหนก่อน
การนำ IPv6 มาใช้ ควรจะเป็นไปอย่างค่อยเป็นค่อยไป เนื่องจากการปรับเปลี่ยนอินเทอร์เน็ตโพรโตคอลจะส่งผลกระทบต่อเครือข่ายทั่วโลกที่เชื่อมต่อกันอยู่ ดังนั้นการปรับเปลี่ยนไปสู่เครือข่าย IPv6 ล้วน อาจใช้ระยะเวลาเป็นปี เพราะเหตุนี้ ทาง IETF จึงเสนอทางออก เพื่อช่วยในการทำงานร่วมกันระหว่าง IPv4 และ IPv6 ในระหว่างที่เครือข่ายบางแห่งเริ่มมีการปรับเปลี่ยน
ในช่วงแรก การใช้งาน IPv6 อาจอยู่ในวงแคบ ดังนั้นเราต้องการเทคนิคเพื่อเชื่อมต่อเครือข่ายที่เป็น IPv6 เข้ากับเครือข่าย IPv4 หรือเครือข่าย IPv6 อื่น เทคนิคการทำงานร่วมกันระหว่าง IPv4 และ IPv6 แบ่งออกเป็น 3 ประเภทด้วยกันคือ
1. การทำ dual stack—เป็นวิธีพื้นฐานที่สุด ทำงานโดยใช้ IP stack สองอันคือ IPv4 stack และ IPv6 stack ทำงานควบคู่กัน เมื่อใดที่แอพพลิเคชั่นที่ใช้เป็น IPv4 ข้อมูลแพ็กเก็ตก็จะถูกส่งออกผ่านทาง IPv4 stack เมื่อใดที่แอพพลิเคชั่นที่ใช้เป็น IPv6 ข้อมูลแพ็กเก็ตก็จะถูกส่งออกผ่านทาง IPv6 stack การทำ dual stack เป็นทางออกที่ง่ายที่สุดแต่ไม่ใช่ long term solution เนื่องจากยังจำเป็นต้องใช้ IPv4 address ที่โฮสต์หรือเร้าท์เตอร์ที่ใช้ dual stack นั้น
2. การทำ tunneling—เป็นอีกวิธีที่ใช้กันแพร่หลายเพราะเหมาะสมกับการสื่อสารระหว่างเครือข่าย IPv6 ผ่านเครือข่าย IPv4 การส่งข้อมูลทำได้โดยการ encapsulate IPv6 packet ภายใน IPv4 packet ที่ tunneling gateway ก่อนออกไปยังเครือข่าย IPv4 ที่ปลายทาง ก่อนเข้าไปสู่เครือข่าย IPv6 ก็จะต้องผ่าน tunneling gateway อีกตัวซึ่งทำหน้าที่ decapsulate IPv6 packet และส่งต่อไปยังจุดหมายปลายทาง จะเห็นได้ว่าการทำ tunneling นี้จะใช้ไม่ได้สำหรับการสื่อสารโดยตรงระหว่างเครื่องในเครือข่าย IPv6 และเครื่องในเครือข่าย IPv4
3. การทำ translation—การทำ translation จะช่วยในการสื่อสารระหว่างเครือข่าย IPv6 และ IPv4 เทคนิคการทำ translationมีสองแบบ แบบแรกคือการแปลที่ end host โดยเพิ่ม translator function เข้าไปใน protocol stack โดยอาจอยู่ที่ network layer,TCP layer, หรือ socket layer ก็ได้ แบบที่สองคือการแปลที่ network device โดยจะต้องใช้ gateway ทำหน้าที่เป็น IPv6-IPv4และ IPv4-IPv6 translator อยู่ที่ทางออกที่มีการเชื่อมต่อระหว่างเครือข่าย IPv6 และ IPv4

ทั้งนี้หลังจากการปรับเปลี่ยนเสร็จสมบูรณ์ เมื่อเครือข่ายต้นทาง กลางทาง และปลายทาง เป็น IPv6 ทั้งหมด เราสามารถทำการสื่อสารโดยใช้โพรโตคอล IPv6 โดยตรง ซึ่งเราเรียกการสื่อสารลักษณะนี้ว่า native IPv6 network


ทำไมหมายเลข IPv6 address จึงมีความยาวแตกต่างกัน
หมายเลข IPv6 มี 128 บิต ประกอบไปด้วย กลุ่มตัวเลข 8 กลุ่มเขียนขั้นด้วยเครื่องหมาย “:” โดยแต่ละกลุ่มคือเลขฐาน 16 จำนวน 4 ตัว (16 บิต) เช่น
3fee:085b:1f1f:0000:0000:0000:00a9:1234
0000:0000:0000:0000:0000:0000:0000:0001
fec0:0000:0000:0000:0200:3cff:fec6:172e
2001:0000:0000:34fe:0000:0000:00ff:0321
ทั้งนี้สามารถเขียนย่อได้ โดยมีเงื่อนไขคือ
1. หากมีเลขศูนย์ด้านหน้าของกลุ่มใด สามารถจะละไว้ได้
2. หากกลุ่มใดเป็นเลขศูนย์ทั้ง 4 ตัว (0000) สามารถเขียนแทนด้วย “0”
3. หากกลุ่มใดกลุ่มหนึ่ง (หรือหลายกลุ่มที่ตำแหน่งติดกัน) เป็นเลขศูนย์ทั้งหมด สามารถจะละไว้ได้ โดยใช้เครื่องหมาย “::” แต่จะสามารถทำลักษณะนี้ได้ในตำแหน่งเดียวเท่านั้น เพื่อไม่ให้เกิดความสับสน
หากใช้สองเงื่อนไขแรก เราสามารถเขียนหมายเลข IPv6 ข้างต้นได้ดังนี้
3fee:085b:1f1f:0:0:0:a9:1234
0:0:0:0:0:0:0:1
fec0:0:0:0:200:3cff:fec6:172e
2001:0:0:34fe:0:0:ff:321
หากใช้เงื่อนไขที่สาม เราสามารถเขียนหมายเลข IPv6 ข้างต้นได้ดังนี้
3fee:085b:1f1f::a9:1234
::1
fec0::200:3cff:fec6:172e
2001::34fe:0:0:ff:321
จะเห็นได้ว่าเราสามารถเขียนหมายเลข IPv6 ได้หลายวิธี โดยแต่ละวิธี มีความยาวแตกต่างกันไป ซึ่งบางครั้งหมายเลข IPv6 อาจมีหมายเลข IPv4 แทรกอยู่ ในกรณีนี้ เราสามารถเขียนในลักษณะที่คงสภาพหมายเลข IPv4 อยู่ได้ เช่น
0:0:0:0:0:0:192.168.1.1
0:0:0:0:0:ffff:192.168.1.1
สามารถเขียนย่อได้เป็น
::192.168.1.1
::ffff:192.168.1.1


สถานการณ์ในประเทศไทย
ในส่วนสถานการณ์ในประเทศไทย ศูนย์เทคโนโลยีอิเล็กทรอนิคส์และคอมพิวเตอร์แห่งชาติ (NECTEC) นับว่าเป็นผู้นำในการให้บริการเชื่อมต่อเครือข่าย IPv6 กับต่างประเทศผ่านการทำ IPv6-over-IPv4 tunnel และการทำ 6to4 relay นอกจากนี้ศูนย์เทคโนโลยีอิเล็กทรอนิคส์และคอมพิวเตอร์แห่งชาติยังได้รับความร่วมมือจากหลายมหาวิทยาลัยและบริษัทผู้ให้บริการอินเทอร์เน็ต ทำให้เกิดเครือข่าย IPv6 เพื่อการทดสอบภายในประเทศ (Thailand IPv6 Testbed) ซึ่งมีการเชื่อมต่อด้วยเทคนิคที่หลากหลาย  ขณะนี้มีบริษัทผู้ให้บริการอินเทอร์เน็ตที ่ได้ทำการเชื่อมต่อกับเครือข่ าย IPv6 ทั้งในและนอกประเทศแล้ว
6 บริษัท คือ CAT, AsiaInfonet, CS-Loxinfo, JI-Net, Samart และ Internet Thailand
ในปัจจุบันได้มีการก่อตั้งคณะทำงานระดับประเทศขึ้นภายใต้ชื่อ Thailand IPv6 Forum หรือ โครงการความร่วมมือพัฒนาและส่งเสริมการใช้เครือข่าย IPv6 ซึ่งเป็นความร่วมมือระหว่างหน่วยงานวิจัย ผู้ให้บริการอินเทอร์เน็ตและผู้ผลิตหรือตัวแทนจำหน่าย Hardware และ Software ระบบเครือข่าย ซึ่งกิจกรรมในปัจจุบันของ Thailand IPv6 Forum ได้แก่ การเข้ าร่วมเป็นสมาชิกของ Asia-Pacific IPv6 Task Force และการเชื่อมต่อแบบ Native IPv6 ภายในประเทศระหว่าง 3 องค์กรหลัก คือ ศูนย์เทคโนโลยีอิเล็กทรอนิคส์และคอมพิวเตอร์แห่งชาติ, บริษัท กสท โทรคมนาคม จำกัด(มหาชน) และมหาวิทยาลัยสงขลานครินทร์  ซึ่งเหล่านี้นับว่าเป็นอีกก้าวหนึ่งที่แสดงให้เห็นถึงความตื่นตัวในการตอบรับการนำ IPv6 มาใช้ในประเทศไทย

ขอบคุณข้อมูลจาก  :  http://suraban.wordpress.com/2011/04/27/ipv6-


วันพุธที่ 17 กันยายน พ.ศ. 2557

ผู้บริหารยุคใหม่เข้าใจ ทันภัย กฎหมาย IC

         


           จากการที่ได้เข้าไปอบรมสัมมนาในหัวข้อเรื่อง ผู้บริหารยุคใหม่เข้าใจ ทันภัย กฎหมาย IC” นี้  ทำให้เรารู้เท่าทันภัยที่จะเกิดจากการใช้อินเตอร์เน็ตในชีวิตประจำวัน ไม่ว่าจะเป็นการเล่น Line เล่น Facebook หรือการเล่นที่เกี่ยวกับระบบอินเตอร์เน็ต ทางกฎหมายสามารถตรวจสอบผ่านทางเจ้าของระบบที่ให้บริการอินเตอร์เน็ตได้ ไม่ว่าจะเป็น 3BB TOT หรือเครือข่ายอื่นๆ ที่ให้บริการ  และมีการปกป้องผู้เสียหายไม่ว่าจะเป็นคนไทย หรือชาวต่างชาติ กรณีเช่น ถ้าเกิดคนไทยสั่งของจากต่างประเทศแล้วของที่ได้รับเป็นของปลอม ผู้เสียหายจะต้องไปแจ้งความที่สำนักงานตำรวจที่อยู่ในแถบที่เกิดเหตุซึ่งก็คือที่ประเทศไทย  และกฎหมาย IT ยังปกป้องคุ้มครองด้านสังคม โดนการปกป้องไม่ให้มีการเผยแพร่เว็บไซต์ลามกอนาจารเพื่อป้องกันเยาวชนของประเทศชาติ ทำให้เรารู้ทันกฎหมาย IT ไม่กระทำผิดโดยที่ไม่รู้ตัวและรู้วิธีแก้ปัญหาเมื่อเกิดเหตุการณ์เกี่ยวกับเรื่อง IT


วันศุกร์ที่ 12 กันยายน พ.ศ. 2557

มาตรฐานของ Wireless LAN (Wi-Fi)

เครือข่ายไร้สายมาตรฐาน IEEE 802.11 ได้รับการตีพิมพ์เผยแพร่ครั้งแรกเมื่อปี พ.ศ. 2540 โดยสถาบัน IEEE (The Institute of Electronics and Electrical Engineers) ซึ่งมีข้อกำหนดระบุไว้ว่า ผลิตภัณฑ์เครือข่ายไร้สายในส่วนของ PHY Layerนั้นมีความสามารถในการรับส่งข้อมูลที่ความเร็ว 1, 2, 5.5, 11 และ 54 เมกะบิตต่อวินาที โดยมีสื่อนำสัญญาณ 3 ประเภทให้เลือกใช้งานอันได้แก่ คลื่นวิทยุย่านความถี่ 2.4 กิกะเฮิรตซ์, 2.5 กิกะเฮิรตซ์และคลื่นอินฟาเรด ส่วน.ในระดับชั้น MAC Layerนั้นได้กำหนดกลไกของการทำงานแบบ CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) ซึ่งมีความคล้ายคลึงกับ CSMA/CD (Collision Detection) ของมาตรฐาน IEEE 802.3 Ethernet ซึ่งนิยมใช้งานบนระบบเครือข่ายแลนใช้สาย โดยมีกลไกในการเข้ารหัสข้อมูลก่อนแพร่กระจายสัญญาณไปบนอากาศ พร้อมกับมีการตรวจสอบผู้ใช้งานอีกด้วย

มาตรฐาน IEEE 802.11
             ในยุคเริ่มแรกนั้นให้ประสิทธิภาพการทำงานที่ค่อนข้างต่ำ ทั้งไม่มีการรับรองคุณภาพของการให้บริการที่เรียกว่า QoS (Quality of Service) ซึ่งมีความสำคัญในสภาพแวดล้อมที่มีแอพพลิเคชันหลากหลายประเภทให้ใช้งาน นอกจากนั้นกลไกในเรื่องการรักษาความปลอดภัยที่นำมาใช้ก็ยังมีช่องโหว่จำนวนมาก IEEE จึงได้จัดตั้งคณะทำงานขึ้นมาหลายชุดด้วยกัน เพื่อทำการพัฒนาและปรับปรุงมาตรฐานให้มีศักยภาพเพิ่มสูงขึ้น

มาตรฐาน IEEE 802.11a
             เป็นมาตรฐานที่ได้รับการตีพิมพ์และเผยแพร่เมื่อปี พ.ศ. 2542 โดยใช้เทคโนโลยี OFDM (Orthogonal Frequency Division Multiplexing) เพื่อพัฒนาให้ผลิตภัณฑ์ไร้สายมีความสามารถในการรับส่งข้อมูลด้วยอัตราความเร็วสูงสุด 54 เมกะบิตต่อวินาที โดยใช้คลื่นวิทยุย่านความถี่ 5 กิกะเฮิรตซ์ ซึ่งเป็นย่านความถี่ที่ไม่ได้รับอนุญาตให้ใช้งานโดยทั่วไปในประเทศไทย เนื่องจากสงวนไว้สำหรับกิจการทางด้านดาวเทียม ข้อเสียของผลิตภัณฑ์มาตรฐาน IEEE 802.11a ก็คือมีรัศมีการใช้งานในระยะสั้นและมีราคาแพง ดังนั้นผลิตภัณฑ์ไร้สายมาตรฐาน IEEE 802.11a จึงได้รับความนิยมน้อย

มาตรฐาน IEEE 802.11b
             เป็นมาตรฐานที่ถูกตีพิมพ์และเผยแพร่ออกมาพร้อมกับมาตรฐาน IEEE 802.11a เมื่อปี พ.ศ. 2542 ซึ่งเป็นที่รู้จักกันดีและได้รับความนิยมในการใช้งานกันอย่างแพร่หลายมากที่สุด ผลิตภัณฑ์ที่ออกแบบมาให้รองรับมาตรฐาน IEEE 802.11b ใช้เทคโนโลยีที่เรียกว่า CCK (Complimentary Code Keying) ร่วมกับเทคโนโลยี DSSS (Direct Sequence Spread Spectrum)เพื่อให้สามารถรับส่งข้อมูลได้ด้วยอัตราความเร็วสูงสุดที่ 11 เมกะบิตต่อวินาที โดยใช้คลื่นสัญญาณวิทยุย่านความถี่ 2.4 กิกะเฮิรตซ์ ซึ่งเป็นย่านความถี่ที่อนุญาตให้ใช้งานในแบบสาธารณะทางด้านวิทยาศาสตร์ อุตสาหกรรม และการแพทย์ โดยผลิตภัณฑ์ที่ใช้ความถี่ย่านนี้มีชนิด ทั้งผลิตภัณฑ์ที่รองรับเทคโนโลยี Bluetooth, โทรศัพท์ไร้สายและเตาไมโครเวฟ จึงทำให้การใช้งานนั้นมีปัญหาในเรื่องของสัญญาณรบกวนของผลิตภัณฑ์เหล่านี้ ข้อดีของมาตรฐาน IEEE 802.11b ก็คือ สนับสนุนการใช้งานเป็นบริเวณกว้างกว่ามาตรฐาน IEEE 802.11a ผลิตภัณฑ์มาตรฐาน IEEE 802.11b เป็นที่รู้จักในเครื่องหมายการค้า Wi-Fi ซึ่งกำหนดขึ้นโดย WECA (Wireless Ethernet Compatability Alliance) โดยผลิตภัณฑ์ที่ได้รับเครื่องหมาย Wi-Fi ได้ผ่านการตรวจสอบและรับรองว่าเป็นไปตามข้อกำหนดของมาตรฐาน IEEE 802.11b ซึ่งสามารถใช้งานร่วมกันกับผลิตภัณฑ์ของผู้ผลิตรายอื่นๆ ได้

มาตรฐาน IEEE 802.11g
             เป็นมาตรฐานที่นิยมใช้งานกันมากในปัจจุบันและได้เข้ามาทดแทนผลิตภัณฑ์ที่รองรับมาตรฐาน IEEE 802.11bเนื่องจากสนับสนุนอัตราความเร็วของการรับส่งข้อมูลในระดับ 54 เมกะบิตต่อวินาที โดยใช้เทคโนโลยี OFDM บนคลื่นสัญญาณวิทยุย่านความถี่ 2.4 กิกะเฮิรตซ์ และให้รัศมีการทำงานที่มากกว่า IEEE 802.11a พร้อมความสามารถในการใช้งานร่วมกันกับมาตรฐาน IEEE 802.11b ได้ (Backward-Compatible)

ตารางที่ 1 แสดงมาตรฐาน IEEE 802.11, 802.11a, 802.11b,802.11g



มาตรฐาน IEEE 802.11e
             เป็นมาตรฐานที่ออกแบบมาสำหรับการใช้งานแอพพลิเคชันทางด้านมัลติเมียอย่าง VoIP (Voice over IP) เพื่อควบคุมและรับประกันคุณภาพของการใช้งานตามหลักการ QoS (Quality of Service) โดยการปรับปรุง MAC Layer ให้มีคุณสมบัติในการรับรองการใช้งานให้มีประสิทธิภาพ

มาตรฐาน IEEE 802.11f
             มาตรฐานนี้เป็นที่รู้จักกันในนาม IAPP (Inter Access Point Protocol) ซึ่งเป็นมาตรฐานที่ออกแบบมาสำหรับจัดการกับผู้ใช้งานที่เคลื่อนที่ข้ามเขตการให้บริการของ Access Point ตัวหนึ่งไปยัง Access Point เพื่อให้บริการในแบบโรมมิงสัญญาณระหว่างกัน

มาตรฐาน IEEE 802.11h
             มาตรฐานที่ออกแบบมาสำหรับผลิตภัณฑ์เครือข่ายไร้สายที่ใช้งานย่านความถี่ 5 กิกะเฮิรตซ์ ให้ทำงานถูกต้องตามข้อกำหนดการใช้ความถี่ของประเทศในทวีปยุโรป

ขอขอบคุณข้อมูลจาก  :
http://www.dms.moph.go.th/dmsict/it03.html
http://web.agri.cmu.ac.th/it/download/document/wifi_report.pdf


สถาปัตยกรรมของระบบเครือข่าย

                สถาปัตยกรรมของระบบเครือข่าย (Network Architecture) หรือโทโปโลยี (Topology) คือลักษณะทาง กายภาพ (ภายนอก) ของเครือข่ายซึ่งหมายถึง ลักษณะของการเชื่อมโยงสายสื่อสารเข้ากับอุปกรณ์อิเล็กทรอนิกส์ต่างๆ ภายในเครือข่ายด้วยกันนั่นเอง โทโปโลยีของเครือข่าย แต่ละแบบมีความเหมาะสมในการใช้งาน แตกต่างกัน จึงมีความจำเป็นที่เราจะต้องทำการศึกษาลักษณะและคุณสมบัติ ข้อดีและข้อเสียของโทโปโลยีแต่ละแบบ เพื่อนำไปใช้ในการ ออกแบบ พิจารณาเครือข่ายให้เหมาะสมกับการใช้งาน รูปแบบของโทโปโลยีของเครือข่ายหลักๆ มีดังต่อไปนี้

ประเภทของโทโปโลยี
•              โทโปโลยีแบบบัส (Bus Topology)
•              โทโปโลยีแบบดวงดาว (Star Topology)
•              โทโปโลยีแบบวงแหวน (Ring Topology)
•              โทโปโลยีแบบเมช (Mesh Topology)

โทโปโลยีแบบบัส (Bus Topology)
การเชื่อมต่อแบบบัสจะมีสายหลัก 1 เส้น เครื่องคอมพิวเตอร์ทั้งเซิร์ฟเวอร์ และไคลเอ็นต์ทุกเครื่องจะต้องเชื่อมต่อสายเคเบิ้ลหลักเส้นนี้ โดยเครื่องคอมพิวเตอร์จะถูกมองเป็น Node เมื่อเครื่องไคลเอ็นต์เครื่องที่หนึ่ง (Node A) ต้องการส่งข้อมูลให้กับเครื่องที่สอง (Node C) จะต้องส่งข้อมูล และแอดเดรสของ Node C ลงไปบนบัสสายเคเบิ้ลนี้ เมื่อเครื่องที่ Node C ได้รับข้อมูลแล้วจะนำข้อมูล ไปทำงานต่อทันที



ข้อดี
•              ไม่ต้องเสียค่าใช้จ่ายในการวางสายเคเบิลมากนัก
•              สามารถขยายระบบได้ง่าย
•              เสียค่าใช้จ่ายน้อย

ข้อเสีย
•              อาจเกิดข้อผิดพลาดง่าย เนื่องจากทุกเครื่องคอมพิวเตอร์ต่อยู่บนสายสัญญาณเพียงเส้นเดียว ดังนั้นหากมีการขาดที่ตำแหน่งใดตำแหน่งหนึ่ง ก็จะทำให้เครื่องอื่นส่วนใหญ่หรือทั้งหมดในระบบไม่สามารถใช้งานได้ตามไปด้วย
•              การตรวจหาโหนดเสีย ทำได้ยากเนื่องจากขณะใดขณะหนึ่งจะมีคอมพิวเตอร์เพียงเครื่องเดียวเท่านั้นที่สามารถส่งข้อความออกมาบนสายสัญญาณ ดังนั้นถ้ามีเครื่องคอมพิวเตอร์จำนวนมากๆ อาจทำให้เกิดการคับคั่งของเน็ตเวิร์ก ซึ่งจะทำให้ระบบช้าลงได้

โทโปโลยีแบบวงแหวน (Ring Topology)
การเชื่อมต่อแบบวงแหวน เป็นการเชื่อมต่อจากเครื่องหนึ่งไปยังอีกเครื่องหนึ่ง จนครบวงจร ในการส่งข้อมูลจะส่งออกที่สายสัญญาณวงแหวน โดยจะเป็นการส่งผ่านจากเครื่องหนึ่ง ไปสู่เครื่องหนึ่งจนกว่าจะถึงเครื่องปลายทาง ปัญหาของโครงสร้างแบบนี้คือ ถ้าหากมีสายขาดในส่วนใดจะทำ ให้ไม่สามารถส่งข้อมูลได้ ระบบ Ring มีการใช้งานบนเครื่องตระกูล IBM กันมาก เป็นเครื่องข่าย Token Ring ซึ่งจะใช้รับส่งข้อมูลระหว่างเครื่องมินิหรือเมนเฟรมของ IBM กับเครื่องลูกข่ายบนระบบ
การเชื่อมต่อแบบวงแหวน ถูกออกแบบให้ใช้ Media Access Units (MAU) ต่อรวมกันแบบเรียงลำดับเป็นวงแหวน แล้วจึงต่อ คอมพิวเตอร์ (PC) ที่เป็น Workstation หรือ Server เข้ากับ MAU ใน MAU 1 ตัวจะสามารถต่อออกไปได้ถึง 8 สถานี เมื่อสถานีถัดไปนั้นรับรู้ว่าต้องรับข้อมูล แล้วมันจึงส่งข้อมูลกลับ เป็นการตอบรับ เมื่อสถานีที่จะส่งข้อมูลได้รัยสัญญาณตอบรับ แล้วมันจึงส่งข้อมูลครั้งแรก แล้วมันจะลบข้อมูลออกจากระบบ เพื่อให้ได้ใช้ข้อมูลอื่นๆ ต่อไป ดังนั้นทุกสถานีบน โทโปโลยี วงแหวนจะได้ทำงานทั้งหมดซึ่งจะคอยเป็นผู้รับและผู้ส่งแล้วยังเป็นรีพีทเตอร์ในตัวอีกด้วย ข้อมูลที่ผ่านไปแต่ละสถานี นั้น ข้อมูลที่เป็นตำแหน่งที่อยู่ตรงกับ สถานีใด สถานีนั้นจะรับข้อมูลเก็บไว้ แต่มันจะไม่ลบข้อมูลออกจากระบบ มันยังคงส่งข้อมูลต่อไป ดังนั้นผู้ส่งข้อมูลครั้งแรกเท่านั้นที่จะเป็นผู้ลบข้อมูลออกจากระบบ ครั้นเมื่อสถานีส่ง TOKEN มาถามสถานีถัดไปแล้วแต่กลับไม่ได้รับคำตอบ สถานีส่ง TOKEN จะทวนซ้ำข้อมูลเป็นครั้งที่สอง ถ้ายังคงไม่ได้รับคำตอบ จึงส่งข้อมูลออกไปได้ เหตุการณ์ดังกล่าวนี้ เป็นอีกแนวทางหนึ่งในการแก้ปัญหาที่ไม่ให้ระบบหยุดชะงักการทำงานลงของระบบ เนื่องจากสถานีหนึ่งเกิดการเสียหาย หรือชำรุด ระบบจึงยังคงสามารถทำงานต่อไปได้



ข้อดี
•              ใช้เคเบิลและเนื้อที่ในการติดตั้งน้อย
•              คอมพิวเตอร์ทุกเครื่องในเน็ตเวิร์กมีโอกาสที่จะส่งข้อมูลได้อย่างทัดเทียมกัน

ข้อเสีย
•              หากโหลดใดโหลดหนึ่งเกิดปัญหาขึ้นจะค้นหาได้ยากว่าต้นเหตุอยู่ที่ไหน และวงแหวนจะขาดออก


โทโปโลยีแบบดวงดาว (Star Topology)
การเชื่อมต่อแบบสตาร์นี้จะใช้อุปกรณ์ Hub เป็นศูนย์กลางในการเชื่อมต่อ โดยที่ทุกเครื่องจะต้องผ่าน Hub สายเคเบิ้ลที่ใช้ส่วนมากจะเป้น UTP และ Fiber Optic ในการส่งข้อมูล Hub จะเป็นเสมือนตัวทวนสัญญาณ (Repeater) ปัจจุบันมีการใช้ Switch เป็นอุปกรณ์ในการเชื่อมต่อซึ่งมีประสิทธิภาพการทำงานสูงกว่า
•              แบบ Star จะเป็นลักษณะของการต่อเครือข่ายที่ Work station แต่ละตัวต่อรวมเข้าสู่ศูนย์กลางสวิตซ์ เพื่อสลับตำแหน่งของเส้นทางของข้อมูลใด ๆ ในระบบ ดังนั้นใน โทโปโลยี แบบดาว คอมพิวเตอร์จะติดต่อกันได้ใน 1 ครั้ง ต่อ 1 คู่สถานีเท่านั้น เมื่อสถานีใดต้องการส่งข้องมูลมันจะส่งข้อมูลไปยังศูนย์กลางสวิทซ์ก่อน เพื่อบอกให้ศูนย์กลาง สวิตซ์มันสลับตำแหน่งของคู่สถานีไปยังสถานีที่ต้องการติดต่อด้วย ดังนั้นข้อมูลจึงไม่เกิดการชนกันเอง ทำให้การสื่อสารได้รวดเร็วเมื่อสถานีใดสถานีหนึ่งเสีย ทั้งระบบจึงยังคงใช้งานได้ ในการค้นหาข้อบกพร่องจุดเสียต่างๆ จึงหาได้ง่ายตามไปด้วย แต่ก็มีข้อเสียที่ว่าต้องใช้งบประมาณสูงในการติดตั้งครั้งแรก



ข้อดี
•              ติดตั้งและดูแลง่าย
•              แม้ว่าสายที่เชื่อมต่อไปยังบางโหลดจะขาด โหลดที่เหลืออยู่ก็ยังจะสามารถทำงานได้ ทำให้ระบบเน็ตเวิร์กยังคงสามารถทำงานได้เป็นปกติ
•              การมี Central node อยู่ตรงกลางเป็นตัวเชื่อมระบบ ถ้าระบบเกิดทำงานบกพร่องเสียหาย ทำให้เรารู้ได้ทันทีว่าจะไปแก้ปัญหาที่ใด

ข้อเสีย
•              เสียค่าใช้จ่ายมาก ทั้งในด้านของเครื่องที่จะใช้เป็น central node และค่าใช้จ่ายในการติดตั้งสายเคเบิลในสถานีงาน
•              การขยายระบบให้ใหญ่ขึ้นทำได้ยาก เพราะการขยายแต่ละครั้งจะต้องเกี่ยวเนื่องกับโหลดอื่นๆ ทั้งระบบ
•              เครื่องคอมพิวเตอร์ศูนย์กลางมีราคาแพง แบบวงแหวน (Ring Network)

โทโปโลยีแบบเมช (Mesh Topology)
                เป็นรูปแบบที่ถือว่า สามารถป้องกันการผิดพลาดที่อาจจะเกิดขึ้นกับระบบได้ดีที่สุด เป็นรูปแบบที่ใช้วิธีการเดินสายของแต่เครื่อง ไปเชื่อมการติดต่อกับทุกเครื่องในระบบเครือข่าย คือเครื่องทุกเครื่องในระบบเครือข่ายนี้ ต้องมีสายไปเชื่อมกับทุก ๆ เครื่อง ระบบนี้ยากต่อการเดินสายและมีราคาแพง จึงมีค่อยมีผู้นิยมมากนัก



ข้อดี
•              อัตราความเร็วในการส่งข้อมูล ความเชื่อถือได้ของระบบ
•              ง่ายต่อการตรวจสอบความผิดพลาด
•              ข้อมูลมีความปลอดภัยและมีความเป็นส่วนตัว

ข้อเสีย
•              จำนวนจุดที่ต้องใช้ในการเชื่อมต่อ และจำนวน Port I/O ของแต่ละโหนดมีจำนวนมาก (ตามสูตรข้างต้น) ถ้าในกรณีที่จำนวนโหนดมาก เช่นถ้าจำนวนโหนดทั้งหมดในเครือข่ายมีอยู่ 100 โหนด จะต้องมีจำนวนจุดเชื่อมต่อถึง 4,950 เส้น เป็นต้น

ขอบคุณข้อมูลจาก  :  
http://irrigation.rid.go.th/rid15/ppn/Knowledge/Networks%20Technology/network5.htm
http://kanjana-aon.blogspot.com/2009/06/topology.html


วันจันทร์ที่ 25 สิงหาคม พ.ศ. 2557

เคล็ดลับน่ารู้สำหรับ Windows 7


เทคนิคการสร้างแป้นพิมพ์ลัดสำหรับการเข้าถึงโปรแกรม

    คุณสามารถสร้างแป้นพิมพ์ลัดสำหรับการเข้าถึงโปรแกรมใด ๆ ใน Windows 7 มีวิธี ดังนี้

1.โดยให้ทำการคลิกขวาที่ไอคอนของโปรแกรม


2.เลือก Properties


3.เลือกแท็บ Shortcut 


4.จากนั้นในช่อง Shortcut key จะ เป็นการตั้งค่าแป้นพิมพ์ลัดสำหรับโปรแกรมที่ต้องการให้พิมพ์เข้าไปได้เลยดัง แสดงในรูปด้านล่างครับ เราก็จะเข้าถึงโปรแกรมนั้น ๆ ได้ด้วยการพิมพ์ตามที่ได้ตั้งค่าไว้แล้ว



ขอบคุณข้อมูลจาก : http://siwanantipwin7.blogspot.com/2013/07/windows-7_7691.html

วันอาทิตย์ที่ 20 กรกฎาคม พ.ศ. 2557

ความเป็นมาและยุคของคอมพิวเตอร์

ความหมาย และความเป็นมาของคอมพิวเตอร์
        หมายถึง เครื่องคำนวณอิเล็กทรอนิกส์ที่สามารถทำงานคำนวณผลและเปรียบเทียบค่าตามชุดคำสั่งด้วยความเร็วสูง อย่างต่อเนื่อง และอัตโนมัติ
          การจำแนกคอมพิวเตอร์ตามลักษณะวิธีการทำงานภายในเครื่องคอมพิวเตอร์อาจแบ่งได้เป็นสองประเภทใหญ่ ๆ คือ
1. แอนะล็อกคอมพิวเตอร์ (analog computer) เป็นเครื่องคำนวณอิเล็กทรอนิกส์ที่ไม่ได้ใช้ค่าตัวเลขเป็นหลักของการคำนวณ แต่จะใช้ค่าระดับแรงดันไฟฟ้าแทน ไม้บรรทัดคำนวณ อาจถือเป็นตัวอย่างหนึ่งของแอนะล็อกคอมพิวเตอร์ ที่ใช้ค่าตัวเลขตามแนวความยาวไม้บรรทัดเป็นหลักของการคำนวณ โดยไม้บรรทัดคำนวณจะมีขีดตัวเลขกำกับอยู่ เมื่อไม้บรรทัดหลายอันมรประกบรวมกัน การคำนวณผล เช่น การคูณ จะเป็นการเลื่อนไม้บรรทัดหนึ่งไปตรงตามตัวเลขของตัวตั้งและตัวคูณของขีดตัวเลขชุดหนึ่ง แล้วไปอ่านผลคูณของขีดตัวเลขอีกชุดหนึ่งแอนะล็อกคอมพิวเตอร์แบบอิเล็กทรอนิกส์จะใช้หลักการทำนองเดียวกัน โดยแรงดันไฟฟ้าจะแทนขีดตัวเลขตามแนวยาวของไม้บรรทัด
แอนะล็อกคอมพิวเตอร์จะมีลักษณะเป็นวงจรอิเล็กทรอนิกส์ที่แยกส่วนทำหน้าที่เป็นตัวกระทำและเป็นฟังก์ชันทางคณิตศาสตร์ จึงเหมาะสำหรับงานคำนวณทางวิทยาศาสตร์และวิศวกรรมที่อยู่ในรูปของสมการคณิตศาสตร์ เช่น การจำลองการบิน การศึกษาการสั่งสะเทือนของตึกเนื่องจากแผ่นดินไหว ข้อมูลตัวแปรนำเข้าอาจเป็นอุณหภูมิความเร็วหรือความดันอากาศ ซึ่งจะต้องแปลงให้เป็นค่าแรงดันไฟฟ้า เพื่อนำเข้าแอนะล็อกคอมพิวเตอร์ผลลัพธ์ที่ได้ออกมาเป็นแรงดันไฟฟ้าแปรกับเวลาซึ่งต้องแปลงกลับไปเป็นค่าของตัวแปรที่กำลังศึกษา
ในปัจจุบันไม่ค่อยพบเห็นแอนะล็อกคอมพิวเตอร์เท่าไรนักเพราะผลการคำนวณมีความละเอียดน้อย ทำให้มีขีดจำกัดใช้ได้กับงานเฉพาะบางอย่างเท่านั้น
 2. ดิจิทัลคอมพิวเตอร์ (digital computer) คอมพิวเตอร์ที่พบเห็นทั่วไปในปัจจุบัน จัดเป็นดิจิทัลคอมพิวเตอร์แทบทั้งหมด ดิจิทัลคอมพิวเตอร์เป็นเครื่องคำนวณอิเล็กทรอนิกส์ที่ใช้งานเกี่ยวกับตัวเลข มีหลักการคำนวณที่ไม่ใช่แบบไม้บรรทัดคำนวณ แต่เป็นแบบลูกคิด โดยแต่และหลักของลูกคิดคือ หลักหน่วย หลักร้อย และสูงขึ้นไปเรื่อย ๆ เป็นระบบเลขฐานสินที่แทนตัวเลขจากศูนย์ถ้าเก้าไปสิบตัวตามระบบตัวเลขที่ใช้ในชีวิตประจำวัน
ค่าตัวเลขของการคำนวณในดิจิทัลคอมพิวเตอร์จะแสดงเป็นหลักเช่นเดียวกัน แต่จะเป็นระบบเลขฐานสองที่มีสัญลักษณ์ตัวเลขเพียงสองตัว คือเลขศูนย์กับเลขหนึ่งเท่านั้น โดยสัญลักษณ์ตัวเลขทั้งสองตัวนี้ จะแทนลักษณะการทำงานภายในซึ่งเป็นสัญญาณไฟฟ้าที่ต่างกัน การคำนวณภายในดิจิทัลคอมพิวเตอร์จะเป็นการประมวลผลด้วยระบบเลขฐานสองทั้งหมด ดังนั้นเลขฐานสิบที่เราใช้และคุ้นเคยจะถูกแปลงไปเป็นระบบเลขฐานสองเพื่อการคำนวณภายในคอมพิวเตอร์ ผลลัพธ์ที่ได้ก็ยังเป็นเลขฐานสองอยู่ ซึ่งคอมพิวเตอร์จะแปลงเป็นเลขฐานสิบเพื่อแสดงผลให้ผู้ใช้เข้าใจได้ง่าย

ยุคของคอมพิวเตอร์

ยุคของคอมพิวเตอร์ สามารถแบ่งได้เป็น 5 ยุค ดังนี้ คือ
คอมพิวเตอร์ยุคที่ 1
อยู่ระหว่างปี พ.ศ. 2488 ถึง พ.ศ. 2501 เป็นคอมพิวเตอร์ที่ใช้หลอดสุญญากาศซึ่งใช้กำลังไฟฟ้าสูง จึงมีปัญหาเรื่องความร้อนและไส้หลอดขาดบ่อย ถึงแม้จะมีระบบระบายความร้อนที่ดีมาก การสั่งงานใช้ภาษาเครื่องซึ่งเป็นรหัสตัวเลขที่ยุ่งยากซับซ้อน เครื่องคอมพิวเตอร์ของยุคนี้มีขนาดใหญ่โต เช่น มาร์ค วัน (MARK I), อีนิแอค (ENIAC), ยูนิแวค (UNIVAC)

มาร์ค วัน
อินิแอค
ยูนิแวค

คอมพิวเตอร์ยุคที่ 2
คอมพิวเตอร์ยุคที่สอง อยู่ระหว่างปี พ.ศ. 2502 ถึง พ.ศ. 2506 เป็นคอมพิวเตอร์ที่ใช้ทรานซิสเตอร์ โดยมีแกนเฟอร์ไรท์เป็นหน่วยความจำ มีอุปกรณ์เก็บข้อมูลสำรองในรูปของสื่อบันทึกแม่เหล็ก เช่น จานแม่เหล็ก ส่วนทางด้านซอฟต์แวร์ก็มีการพัฒนาดีขึ้น โดยสามารถเขียนโปรแกรมด้วยภาษาระดับสูงซึ่งเป็นภาษาที่เขียนเป็นประโยคที่คนสามารถเข้าใจได้ เช่น ภาษาฟอร์แทน ภาษาโคบอล เป็นต้น ภาษาระดับสูงนี้ได้มีการพัฒนาและใช้งานมาจนถึงปัจจุบัน

คอมพิวเตอร์ยุคที่ 3

 คอมพิวเตอร์ยุคที่สาม อยู่ระหว่างปี พ.ศ. 2507 ถึง พ.ศ. 2512 เป็นคอมพิวเตอร์ที่ใช้วงจรรวม (Integrated Circuit : IC) โดยวงจรรวมแต่ละตัวจะมีทรานซิสเตอร์บรรจุอยู่ภายในมากมายทำให้เครื่องคอมพิวเตอร์จะออกแบบซับซ้อนมากขึ้น และสามารถสร้างเป็นโปรแกรมย่อย ๆ ในการกำหนดชุดคำสั่งต่าง ๆ ทางด้านซอฟต์แวร์ก็มีระบบควบคุมที่มีความสามารถสูงทั้งในรูประบบแบ่งเวลาการทำงานให้กับงานหลาย ๆ อย่าง                      
            
                      
คอมพิวเตอร์ยุคที่ 4
คอมพิวเตอร์ยุคที่สี่ ตั้งแต่ปี พ.ศ. 2513 จนถึงปัจจุบัน เป็นยุคของคอมพิวเตอร์ที่ใช้วงจรรวมความจุสูงมาก(Very Large Scale Integration : VLSI) เช่น ไมโครโพรเซสเซอร์ที่บรรจุทรานซิสเตอร์นับหมื่นนับแสนตัว ทำให้ขนาดเครื่องคอมพิวเตอร์มีขนาดเล็กลงสามารถตั้งบนโต๊ะในสำนักงานหรือพกพาเหมือนกระเป๋าหิ้วไปในที่ต่าง ๆ ได้ ขณะเดียวกันระบบซอฟต์แวร์ก็ได้พัฒนาขีดความสามารถสูงขึ้นมาก มีโปรแกรมสำเร็จให้เลือกใช้กันมากทำให้เกิดความสะดวกในการใช้งานอย่างกว้างขวาง

                                                               
คอมพิวเตอร์ยุคที่ 5

คอมพิวเตอร์ยุคที่ห้า เป็นคอมพิวเตอร์ที่มนุษย์พยายามนำมาเพื่อช่วยในการตัดสินใจและแก้ปัญหาให้ดียิ่งขึ้น โดยจะมีการเก็บความรอบรู้ต่าง ๆ เข้าไว้ในเครื่อง สามารถเรียกค้นและดึงความรู้ที่สะสมไว้มาใช้งานให้เป็นประโยชน์ คอมพิวเตอร์ยุคนี้เป็นผลจากวิชาการด้านปัญญาประดิษฐ์ (Artificial Intelligence : AI) ประเทศต่างๆ ทั่วโลกไม่ว่าจะเป็นสหรัฐอเมริกา ญี่ปุ่น และประเทศในทวีปยุโรปกำลังสนใจค้นคว้าและพัฒนาทางด้านนี้กันอย่างจริงจัง



อ้างอิง  :  http://www.pbps.ac.th/e_learning/combasic/profile.html
  http://www.chandra.ac.th/office/ict/document/it/it01/com_02.htm